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ABSTRACT

Since 1984 Marshall Space Flight Center has been actively
engaged in research and development concerning autonomous power
systems. Much of the work in this domain has dealt with the development
and application of knowledge-based or expert systems to perform tasks
previously accomplished only through intensive human involvement. One
such task is the health status monitoring of electrical power systems.
Such monitoring is a manpower intensive task which is vital to mission
success. The Hubble Space Telescope testbed and its associated NIckle
Cadmium Battery Expert System (NICBES) have been designated as the
system on which the initial proof of concept for intelligent power
system monitoring will be established.

The key function performed by an engineer engaged in system
monitoring 1is to analyze the raw telemetry data and identify from the
whole only those elements which can be considered "significant." This
function requires engineering expertise on the functionality of the
system, the mode of operation and the efficient and effective reading
of the telemetry data. Application of this expertise to extract the
significant components of the data is referred to as data reduction.
Such- a function possesses characteristics which make it a prime
candidate for the application of knowledge-based systems' technologies.
This paper investigates such application and offers recommendations for
the development of "intelligent" data reduction systems.
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INTRODUCTION

As the exploration of space continues missions become much more
complex and much longer in duration. Future missions such as Space
Station, spaced-based radar, communication and surveillance satellites,
strategic defense initiative (SDI) systems and military aircraft will
thus require more sophisticated and intricate electrical power systems
(EPS) [8], [37]. Space power is an extremely precious resource. The
fact that almost every subsystem, especially those that support the
human elements for manned missions, is dependent on power plus the fact
that space power has historically cost about $1000.00/KWH versus $.05
per terrestial KWH has placed space power high on NASA's priority 1list
of research efforts. As was learned from Skylab, for which 15-18 ground
support personnel were required to augment extensive crew involvement
for an B8KW system, a major effort had to be irected toward
autonomously managed electrical power systems.

Automating activities ordinarily performed by humans was seen as
the primary means of reducing both airborne and ground support efforts
and costs [9],[16],[36],[39]. Additionally, more fully autonomous power
systems (as well as other subsystems) will be a necessity for deeper
unmanned exploration of space where missions will require decisions and
actions in "real-time". The time lags incurred with data transmission
and remote intervention will not be acceptable 1in allocating and
protecting the precious electrical power resources. In 1978, therefore,
the Office of Aeronautics and Space Technology at NASA Headquarters
directed NASA to undertake efforts towards accomplishing such autonomy.
Since that directive various NASA efforts 1in conjunction with several
contractors (including Martin Marietta, Rockwell/Rocketdyne, Boeing,
TRW, Hughes and Ford Aerospace) and Universities (among them Auburn,
University of Tennessee, Tennessee Tech.,University of Alabama-
Huntsville,Vanderbilt and Carnegie Mellon) have made much progress in
the realm of space power automation.

It was realized early on in power system investigations that
autonomous systems would require a certain amount of embedded
intelligence to supplement the already proven more conventional
computer approaches [23]. Thus much of the current research effort is
focussed on artificial intelligence techniques, namely application of
expert and knowledge-based systems. The term "expert system" (ES)
refers to a software system which performs a complex, well defined task
using the same input information and problem solving strategies as a
human expert. Additionally, an expert system possesses the capability
to make accessible to the user the reasoning logic it uses to perform
the task. It is implied that the expertise captured by such a system
has 1{ts origins 1in the experience that one or more humans bhave
accumulated while performing a given problem solving task. The term
"knowledge-based system" (KBS) refers to a software system much like an

XI-1




expert system but which implements a body of problem solving knowledge
which may come from any of several sources including text books, humans
(in the form of expertise or more general experiential knowledge) or
others.

It is important in the domain of space power system applications
to draw the distinction between these two types of systems. The reason
for this is that this is a very young domain and "experts" with
experience managing space power systems do not exist. However, the
experience of humans working in this arena coupled with more general
knowledge about power subsystems and components make it possible to
develop what for the purposes of this paper will be referred to as
knowledge-based expert systems (KBES).

Though few doubt the important role that KBES approaches will
play 1in space power automation the domain is one which offers more
complex challenges than those to which the technology has already been
successfully applied. One of the approaches to overcoming some of these
challenges 1s the development and utilization of realistic autnomous
power system breadboards and test beds on which KBES technologies can
be developed and validated [3],[39]. Since space power systems involve
new and highly dynamic technologies, it is through the development and
subsequent use of testbeds that the necessary "engineering expertise"
is being established and archived [18],[25]. Moreover, in order for
autonomous power system development to proceed in a continuous manner
researchers and developers must rely on the lower risk terrestial
testbeds as opposed to actual mission experience alone.

The primary autonomous power system functions that have been
identified for application of knowledge-based systems include: status
estimation, system health status monitoring and maintenance, fault
detection and management, dynamic load scheduling and mainatenance
procedure advising [6]. Currently research and development is ongoing
in almost all of these areas and proof of concept has been established
by various prototype systems. One of the most crucial functions among
these, . since it is a first line defense against system or component
failure, 1is the system health status monitoring. This is the Tlatest
area being researched for knowledge-based expert system applications.

During actual space missions, engineers must monitor the telemetry
data from various power system sensor and identify and analyze any
"significant findings." Siginificant findings are defined more deeply
than those identified by most current systems; namely, the indication
based on a single variable that a fault has occurred. Significant
findings must be based on not only single variable values, but also on
the 1interactions between the variables and the trends 1indicated by
them. Such significant findings can indicate an imminent failure even
though single variable analysis might not. Such a task will involve
large amounts of data, only some of which (in many cases a very small
percentage) will be relevant to any particular prediction. These
factors, combined with the frequency and regularity of task
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performance, requires engineering expertise on the functionality of the
system, the mode of operation, and the efficient and effective reading
of the telemetry data. Such a function can be most effectively
implemented using knowledge-based systems technologies [29]. The
application of such technologies will result in intelligent systems to
support the monitoring function.

The main purpose of this paper is to review the Tliterature
applicable to the intelligent health status monitoring domain. The
findings of this review will then be synthesized into recommendations
for the development of intelligent space power monitoring systems. The
review 1is broadened beyond space power system monitoring because many
of the problem characteristics exist in other domains such as human
health monotiring, manufacturing system monitoring, test data analysis
and others. One characteristic of all such problems, however, is the
requirement to efficiently and effectively perform what is referred to
as "data reduction." Data reduction in this context is defined as the
process of extracting from the larger amounts of monitoring data
(usually being provided by real-time sensors) only the "significant"
elements and presenting these elements to the analyst in a form most
conducive to supporting decision making concerning the heatlh status of
a system. Reducing data to such a form wusually 1involves the
application of various statistical techniques such as graphing,
plotting, calculating maximum and minimum values, calculating means,
taking differences, determining trends, analyzing and comparing
signatures, etc. The issue of intelligent data reduction has universal
implications due to the amount of information now available to decision
makers because of the advances in information processing and remote
sensing technologies.



OBJECTIVES

The objective of this work is to investigate the application of
knowledge-based system technologies to the field of space electrical
power system health status monitoring. This objective was accomplished
by first examining current applications for autonomous power systems
with emphasis on the Hubble Space Telescope test bed and the Nickle
Cadmium Battery Expert System - NICBES. Next a broad review of the
literature related to knowledge-based monitoring systems employing
intelligent data reduction techniques was conducted. In conjunction
with the literature reviews, varous NASA and contractor personnel were
contacted or interviewed concerning the topic. Finally, the findings
were synthesized into recommendations for future research efforts in
this domain.



BACKGROUND

Marshall Space Flight Center's Electrical Power Branch has been
involved since 1984 with the development of expert or knowledge-based
systems [38]. Attention has been primarily focused on comprehensive
fault management and dynamic payload rescheduling activities.
Comprehensive  fault management includes identifying anomolies,
diagnosing actual faults, recommending corrective action for fault
recovery and autonomous implementation of fault recovery actions. The
knowledge-based systems which have been developed and are being
researched as part of these efforts include: the Fault Isolation Expert
System (FIES I and FIES II) ([38], the Space Station Experiment
Scheduler (SSES) [39], the fault detection/diagnosis/recovery system
(STARR) [34], the Space Station Module Power Management and
Distribution (SSM/PMAD) system automation project [6], the coopertive
expert system project for Scheduling and Fault Analysis/Recovery
Integration (SAFARI) [38], the NIckle Cadmium Battery Expert System
(NICBES) [4],[21],[26] and the latest research efforts for Intelligent
Data Reduction - I-DARE [17]. I-DARE is primarily being developed to
enhance and extend the functioning of NICBES which currently interfaces
with the Hubble Space Telescope (HST) power system testbed. Since the
research presented in this paper was conducted to support and extend
the efforts of the I-DARE project a brief overview of the three
interfacing systems will be provided. For more detail on the other
efforts listed the reader is referred to the sited references.

The HST (Hubble Space Telescope) Testbed was developed to simulate
as close as practical the actual system that is to be flown on the HST
[3] (see Figure 1). The testbed consists of six major elements: (1)
the power distribution breadboard, (2) the batteries, (3) the solar
array simiulators (SAS), (4) the load banks, (5) the charge control
hardware, and (6) a control computer (CC), a monitoring computer
referred to as the Digital Data Acquisition System (DDAS), and a
computer for the NICBES. The breadboard includes all pertinent
components of the HST EPS. It provides switching for battery
isolation, Solar Panel Array (SPA) switching and battery
. reconditioning, as well as monitoring via panel meters of individual
battery voltage, current and temperature. Additionally, three strip
chart recorders record voltage and current data.

Power storage 1s provided by six nickel cadmium batteires
manufactured from the same lot as the actual flight hardware. DOuring
the sun portion of its orbit, the HST will be powered by 20 SPA's
(three each per battery) which are simulated on the testbed by two
adjustable constant current power supplies. Three  independently
controlled load banks simulate the spacecraft load and are controlled
by the control computer. The charge control hardware consists of six
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charge current controllers (CCC) identical in circuitry to the flight
hardware. The Control Computer is a microprocessor based system
designed and built at MSFC specifically for the breadboard. The
Control Computer provides for keyboard entry, via a VDT, of several
command adjustable parameters, thus providing functions such as: SAS
control, CCC monitoring, and monitoring and control of load bank
voltages, battery temperatures and battery voltages. The DDAS function
is performed on a DEC LSI-11 computer and is responsible for data
acquisition, 1limit checking, data summaries and orbit time control.
The DDAS samples approximately 400 channels of incoming data from the
breadboard. Once per minute it measures 138 cell voltages and
pressures, currents for the six batteries and battery protection
circuits, the three Jload voltages, six battery voltages and six
temperatures per battery. The DDAS provides data summaries such as
high/low reading, recharge ratio, depth of discharge, etc., on a per
orbit basis. The third computer component of the testbed is currently
as IBM PC/AT which is dedicated to the maintenance and functioning of
the expert system, NICBES.

NICBES

The prototype of NICBES is currently integrated with the HST
testbed and serves as a fault detction and diagnosis system and also a
battery health management system [4] (see figure 2). Functionally
NICBES has four modes: (1) fault diagnosis, (2) battery health status,
(3) advice on battery maintenance, and (4) decision support aid. The
prototype has two separate subsystems: a data handler and a diagnosis
expert system. The data handler is written in Microsoft C and serves
to receive the telemetry data from the DDAS and "massage" it into the
form required by the diagnosis subsystem. The diagnosis subsystem is
written in Arity PROLOG [26]. Its main function is to reason from the
data provided by the data handler and determine if any exception
situaitons are indicated. The engineer may initiate operation of the
expert system once twelve orbits worth of data have been processed by
the data handler. In addition to fault diagnosis which is based on
the current state of the EPS, NICBES also monitors battery health

status based on both current orbital data and historical data. Status
analysis is accomplished based on the interactions of several
variables. Based on an analysis of trends and averages for
combinations of parameters maintenance procedures {i.e., battery

reconditioning, charging scheme, etc.) are recommended. Finally,
NICBES provides decisfon support to the user by supplying summary plots
of pertinent data over the most current twelve simulated orbits.

The NICBES prototype has performed well over the past year and a
half. During this period, however, several features have been
identified for incorporation and upgrade of the system. Among these
are: (1) the need for a user friendly rule editor, (2) a multitasking
capability to allow data collection to continue while a NICBES

ynsultation 1{s in progress, (3) an expanded capability on the number

- Jf orbits of data which can be handled (upgrades from the current 12 to
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perhaps 500 orbits have been discussed) (4) providing a capability to
perform statistical prediction of battery life, and (5) the growth of
NICBES 1into a model based system to explicitly capture the
interelationships of the EPS and thus allow diagnosis of unforseen
faults. A1l of these features are currently being researched and
evaluated.

1-DARE

Data reduction takes many forms, the most common form s
statistical reduction, i.e., means, moving averages, trend analysis,
minimums and maximums, etc [1],[14],[32]. Though these are very useful
for analyzing system performance further reduction which considers
relationships between variables as well as system functioning Tlends
support to an even deeper analysis. Such reduction brings more of a
qualitative approach to the problem. This can be referred to as
"intelligent" reduction. Intelligent because expertise is brought to
bear on the problem through the reduction process and also because the
data is refined by considering the interactions of the system being
analyzed. The overall purpose of the I-DARE effort is to investigate
the phenomenon of data reduction, determine the knowledge used in
performing this task by humans and prototyping a system for
incorporation into the HST testbed [17].

Currently the amount of data being received form the DEC LSI-11
included 370 values per minute. Since each orbit is ninety-six minutes
in duratior the orbital analysis must be performed on 35,520 values.
Adding to the amount of data is the fact that 100 orbits of data are
usually required for accurate trend analysis. Such  analysis,
therefore, must be based on 3,552,000 values. Complete analysis of
such a quantity of data is a formidable task for anyone and is
complicated even further when all the 1interrelationships are
considered. The formidability of the monitoring task coupled with
large demands on computer storage require advanced forms of intelligent
data reduction to support engineers in reducing power system telemetry
data to its significant components. The next section will provide a
review and summary of the findings of current efforts in applying
knowledge-based technologies to the health status monitoring function.

CURRENT KNOWLEDGE-BASED APPROACHES TO SYSTEM HEALTH STATUS MONITORING

Over the 1last three to four years several efforts have been
undertaken to investigate and prototype knowledge-based systems for the
health and status monitoring of space systems. This section will
briefly review these efforts and summarize the finding. A thorough
understanding of current system monitoring technologies and their
approaches to data reduction is a necessary prerequisite to the design
and 1implementation of effective data reduction techniques for further
improving the monitoring function.

Siemens [30] has written several papers on a knowledge-based
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system, STARPLAN, which monitors telemetry data, alerts the operator if
anomolous conditions are identified, and then functions to suggest
corrective actions. STARPLAN was built using the KEE environment. KEE
facilitated development of the knowledge base since the knowledge base
consists of object descriptions which are reasoned about based on
satellite telemetry. It performs fault diagnosis by wutilizing
relational 1inks between objects of the domain model and the
descriptions of the objects. It uses production rules only if the
model-based approach fails.

Hamilton [22] implemented a system in LISP on a Symbolics 31670
which was called SCARES and was applied to the attitude control system
of a spacecraft. SCARES was impliemented with an object oriented
approach using frame-based knowledge representations and inductive and
deductive reasoning. It uses a three stage approach of monitoring,
diagnosis and hypothesis generation and test to detect, diagnose and
recover from anomolies. The monitoring is done by performing three
types of checks on the telemetry: a 1imit check on individual telemetry
points, a rate check on two or more telemetry paint on the same
channel, and a cross-channel check for consistency. Rather than
analyzing all the data, the monitor only receives a sample of each
signal once every two seconds. These samples are sufficient to monitor
and detect faults with real time performance.

Skapura and Zach [31] describe an OPSS based system developed
using LISP and designed to handle the front-end analysis of the
telemetry stream received from the Space Shuttle. As a result of their
investigation into application of knowledge-based systems for real-time
analysis, they draw several important conclusions. They point out the
problems encountered in attempting to use OPS5 for such applications.
Specifically performance limitations, lack of i{nterrupt handling
facilities and the need for a multi-tasking architecture. The authors
also point out as do Watson, Russell and Hackler [ ] that the RETE
algorithm, designed to work in environments where the data changes
slowly, is not optimal for real-time telemetry data analysis.

Gholdston Janik and Lane [20] report on a prototype expert system
to aid in the evaluation of sensor data to monitor and predict power
component performance and to identify faults. The system was
developed on a Compag 80386 computer (with a 80387 co-processor) using
the M1 rule-based development tool. As well as providing a rule-based
language, Ml was also chosen for its ability to interface with the data
acquisition, reduction and graphics routines which were done in C. The
system 1is designed to operate in an automatic monitoring mode or an
interactive diagnostic mode. During automatic monitoring mode, all EPS
information 1is collected from the distributed processors and made
available to the expert system through a data base. The expert system
then determines if any of the data are exhibiting a failure mode.

Pooley, Thompson, Hamsley and Teoh [28] discuss the architecture
of an intelligent health monitoring system (HMS) for reusable rocket
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engine systems. SEES, SPARTA Embedded Expert System, synergistically
integrates vibration analysis, pattern recognition and communications
theory techniques with AI techniques. The main component of the
application is an expert system that uses confidence levels to resolve
conflicts among compound data and thenheuristically chooses each data
set and derives classification rules. The system is comprised of three
major subsystems. The SEES Front End (SFE) processes raw data to
screen obvious anomolies and derive the reduced data set from which it
generates an appropriate signature (the authors do not detail the data
screening, reduction and signature generation techniques since this
information is considered propriety). The Embedded Expert System (EES)
uses the 1information provided by the SFE and the rule set 1in its
knowledge base to infer operating conditions, deduce mean time to
failure and recommend maintenance schedules. The EES has the
capability to invoke functions in the SFL for further data reduction.
The expert system component is being developed using Rule Master which
can then be integrated with the rest of the system which is developed
in C. The Support Function Library (SFL) is a set of supporting
functions for the rest of the HMS.

Watson, Russell and Hackler [36] report on the design and {nitial
development efforts of the Diagnosis and Proection Expert System
(DAPES), an expert system for the purpose of performing on-line
diagnostics and parameter evaluation to determine potential or
incipient fault conditions in electrical power systems. The system
will be part of an overall monitoring computer hierarchy to provide a
full evaluation of the status of the power system and react to both
incipient and catastrophic faults. The attempt with DAPE is to provide
as much computational intelligence as possible to the remote low-level
machinery as possible. Such a capability is feasible with current
advances in microprocessor hardware technologies. The authors' efforts
are focused on the architecture of a responsive expert system for on-
line monitoring environments.

To accomplish this responsiveness an expert system shell PMCLIPS
was developed. PMCLIPS 1{s a modification of CLIPS. It wuses a
Parallelized Match Algorithm (PMA) based on the RETE Algorithm. Though
some of the internal data holding structures are similar for the two
algorithms, the flow through the structures varies considerably.
PMCLIPS takes advantage of the rapidly changing data and parallelism
which characterize monitoring systems to enhance the system's
responsiveness. Inftial results indicate that significant speed up is
accomplished. Prototyping and testing 1is continuing. Though the
authors site data compression and detection of incipient faults as
functions of DAPES, no detail is provided concerning these functions.

Doyle, Sellers and Atkinson [11] present an approach to monitoring
referred to as "Predictive Monitoring" which is based on the idea that
effective monitoring requires an explicit model of a device. The model
requirement is based on (1) the fact that the nominal ranges associated
with a sensor are dynamic as opposed to static as 1in traditional
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monitoring approaches, and (2) the fact that as space systems become
more and more complex and sensors number in the thousands, they must be
treated as resources and context-sensitive importance criteria should
be wused to determine when and how they should be sampled.
Additionally, the authors feel that providing explanation for expected
sensor values would speed up the diagnosis process.

A predictive modeling system called PREMON is proposed and is made
up of three modules: (1) a Causal Simulator, (2) a Sensor Planner, and
(3) a Sensor Interpreter. The causal simulator, based on a model of
the system being monitored, generates predictions about the next cycle
of behavior of the device. The model distinguishes different operating
modes of the device and compliments traditional analytical models with
qualitative reasoning capabilities to accommodate causal dependencies
and 1incomplete and uncertain values. The Sensor Planner, given the
predicted behavior, makes choices about what behavior to verify, which
sensors to employ, and how the sensors should be sampled. The Sensor
Planner then passes instructions to the Sensor Interpreter which reads
sensor channels as directed and compares these with the expectations
provided by the Causal Simulator. Expectations about behavior and
knowledge about distinguishable qualitative values, which are derived
from a device model, drive the comparison and recognition process.

Erickson and Rudakas [15] also report on the advantages to be
gained from a model-based reasoning approach for knowledge-based
application to monitoring and fault diagnosis systems. The paper
discusses the two-phase development of a system called TEXSYS, Thermal
Expert System, which was developed around the Space Station Thermal
Testbed, SSTT (again illustrating the major importance of testbeds to
the development of KBS components for autonomous systems). TEXSYS was
first prototyped using KEE and SimKit on a Symbolics 3670. The phase
II prototype employed MTK, the Ames Research Center's causal Model
Toolkit, 1in place of SimKit. MTK was designated to overcome several
technical 1issues raised during phase 1 development. Several key
features of the TEXSYS system are worthy of mention.

The SSTT model which was developed using the object-oriented and
frame-based representation of KEE was a simplified model of the testbed
which incorporated domain experts' rules of thumb, as well as the
relevant physical laws. Additionally, rather than using direct 1links,
the model topology was represented using KEE CONNECTIONS which allowed
representation of behavior at component boundaries. KEE worlds was
used to represent different temporal states in distinct "worlds" thus
providing a 1limited temporal reasoning facility. A hierarchical
structure was employed to allow reasoning to progress from "black box"
levels to subcomponent level. The ability to perform qualitative and
quantitative modeling and reasoning, as well as the ability to deal
with parameter uncertainty was provided by the structure of MTK. MTK
allows for utilization of "Parameters" which represent the significant
physical measurements employed in describing a given system (i.e.,
temperature, pressure, flow rate, etc.). Parameters are represented as
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special objects with Value, Best Value, State and History attributes.
Values can be given or derived quantitative measures or ranges and can
take on multiple values reflecting different chains of inference. Best
Value represents the systems best guess of the "real value." The State
is simply a qualitative symbolic value of a Parameter (i.e., NOMINAL,
HIGH, NEGATIVE, etc.) and History, another symbolic value, captures
time behavior such as INCREASING, STEADY or DECREASING.

The most current and perhaps most significant research efforts are
those reported by various personnel at the Lockheed Artificial
Intelligence Center [7], [12], [13]. Lockheed is the prime contractor
for the Hubble Space Telescope, moreover, it 1{is the HST Mission
Operations Contractor responsible for the ground operations that ensure
the health and safety of the vehicle. The primary means for assuring
such operation 1is the effective monitoring of approximately 4,690
different telemetry monitors available for interpretation. Six
workstations will be manned 24 hours a day by three shifts of operators
during actual flight. The complexity of the HST and the massive
amounts of telemetry data being received make system health status
monitoring extremely difficult. Lockheed, therefore, has been actively
engaged 1in applying KBS technologies to this domain. The main thrust
of these efforts are directed toward development of the Telemetry
Analysis Logic for Operating Spacecraft (TALOS) system.

TALOS 1is a knowledge-based system consisting of a multitasking
architecture for performing real-time monitoring and off-line deep
analysis. It is being developed using Lockheeds L*STAR proprietory

shell. The system consists of three separate processes which run
concurrently and communicate via message passing using a mailbox
approach. The three processes are the Inference Process, the Data

Management Process (DMP) and the I/0 Process.

Telemetry data is first preprocessed by a VAX and is then sent to
the DMP for scaling and compression before utilizaton by the
Inferencing and I/0 Processes. The Inference Process is written in C
and has been designed to overcome certain deficiencies of other tools
when applied to the monitoring domain. In order to reduce 1long run-
time pattern matching searches, the rule compiler stores Tlocation
information about triples 1in a uniform data structure created at
compile time. There is also a context mechanism (context relating to
mode of HST operation for example) which partitions rules to 1imit the
number being examined for given situations. This context sensitivity
allows "attention" to be focused when important events occur (i.e., the
context may cause a rule to fire which increases the rate at which the
DMP sends data on a particular monitor). The Inference Process uses
special functions which reason about trends and statistics such as time
averages and rates-of-change to provide temporal reasoning capabilities
about past, present and future events. The Inference Process also
contains the "knowledge" requird by the DMP and sends this intelligence
as necesary via messages. The DMP needs to know for each telemetry
monitor such things as sampling rate smoothing and scaling factors,
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1imits, etc. These factors are dynamic based on the requirements as
reflected in the knowledge base.

Also resident in the Inference Process are the diagnostic modules
which are activated periodically to analyze archived telemetry data or
automatically when non-nominal operation is indicated based on real-
time- telemetry analysis. Archived data is analyzed for anomolous
behavior as well as adverse trends. For real-time analysis only about
400 of the over 4000 telemetry monitors are used by operators under
normal operation. If non-nominal behavior is indicated, then rules
fire in the knowledge base resulting in messages being sent to the DMP
to request data collection from new monitors and/or changes in sampling
rates or data compression techniques. The I/0 Process is a hierarchy
of dislays which can be traversed with a mouse. Mousing on a monitor
displays a strip chart which is updated in real time by data from the
DMP  The I/0 Process also receives status/health messages from the
Inference Process.

Findings

A synthesis of the findings from the literature reviewed above
leads to several important observations and conclusions concerning the
effective application of knowledge-based technologies to system health
status monitoring. Those which have relevance to the concept of data
reduction and which should be considered in the implementation of
reduction techniques in this domain are now reviewed.

New technologies and complex systems overburden analysts with
telemetry data and make manual real-time or near real-time analysis
infeasible. Automating portions of the monitoring process has proven
feasible but traditional approaches of establishing a-priori static
nominal ranges proves ineffective for most current applications where
the changing contexts of the system dictate the nature of analysis and
the data required to support this analyses. Sensors must be treated as
information resources and managed accordingly. The context should
dictate the what, when and how to monitor. One approach to
accomplishing this is with a model-based system where an explicit
system model which captures the causal relationships and dependencies
is part of the knowledge base. The model expectations can then help
drive the analysis.

Effective monitoring systems will have to possess reasoning
capabilities beyond just quantitative reasoning. More specifically,
qualitative and temporal reasoning are considered mandatory.
Qualitative reasoning can accommodate uncertain missing and noisy data
[19]. Additionally, the temporal relationships between system
components and the data generated must be captured by the system.
Trend detectfon and analysis are crucial to effective system health
status monitoring.

Finally, the vrapidly changing data inherent with space system
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monitoring dictates certain system characteristics. Systems must have
interupt or multitasking capabilities. Moreover, the i{nferencing
process must be freed of data management functions and I/0 functions.
This can be accomplished with a system architecture which provides for
three separate modules which accomplish these tasks and communicate
with each other as necessary. The rapidly changing data also requires
new and innovative inferencing techniques to overcome the slow search
and matching algorithms characteristic of most current KBS tools.

Implications for Intelligent Data Reduction

As stated previously, intelligent data reduction is the process of
extracting from a set of data only those significant facts which the
"expert(s)" deem necessary for the analysis being undertaken. The
concern in this investigation was to determine the types of
characteristics that might be deemed significant for the health status
monitoring of space power systems and potential data reduction
techniques capturing these characteristics. In considering data
reduction techniques to support health status monitoring, one must also
consider the operation of fault detection and diagnosis which often
follows the monitoring function. One major distinction between these
functions s the time frame for performance. Monitoring is something
that must be done on a near real-time basis so that anomolies can be
detected, or, better yet, predicted early enough to prevent further
system contaminatin. It has been clearly shown that the efficiency of
the monitoring process can be greatly improved by first performing data
reduction on the telemetry data [5] [24] [28] [33].

Moreover, much of the information which would be considered
significant for health status monitoring can also play a major role in
anomaly d{dentification. It has been shown that the most effective
approaches to fault detection involve model-based expert systems. This
same model-based system can be used to drive a data reduction module.

Causal modeling allows the interrelationships and dependencies of
system components to be captured from both a physical system
perspective (i.e., based on physical laws), as well as a conceptual
perspective (based on the intuitive and heuristic knowledge of an
expert) [2] [15] [35]. Such an approach also allows system contexts to
be considered since the model can capture the various defined states in
which the system will operate. Often as contexts change, the
interrelationships of the model will change and vice-versa.

Data reduction techniques should reflect these relationships. For
example, during battery charging, cell temperature is a telemetry value
which needs to be closely monitored. Consequently, during a charge
state, the temperature sensor data should be sampled more frequently
than during a discharge state. Likewise, cell pressure which is
related to temperature should also be monitored at a similar rate.
Another advantage of the modeling approach is that it can provide a
means of checking for telemetry data contamination or 1loss. The
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relationships which exist in the model can be used to predict or verify
the various telemetry values. In terms of system structure for such an
approach, a separation of reduction and inferencing functions is most
appropriate. A library of reduction functions as specified by the
analyst might be incorporated into the data handler and could receive
and pass Nhecessary information from and to the model-based inferencing
module.

The hierarchical approach mentioned previously also has
applications to the data reduction function. It would seem natural
that as the monitoring function proceeds from broader (i.e., a
conceptual black box level) to finer (i.e., subsystem or component
level), levels of detail, the data reduction employed will also go to
finer levels of detail (i.e., from a qualitative measure such as
INCREASING to a more detajled and quantified trend analysis) [19]. At
the conceptual level, overall battery readings might be monitored,
whereas at a lower level, individual cell values would be of concern.
The level of detail would again be influenced by the context as well as
the model interactions.
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CONCLUSIONS AND RECOMMENDATIONS

This research has clearly shown that the efficiency of the health
status monitoring function can be greatly improved using data reduction
techniques on the telemetry data. It has been pointed out, however,
that due to the complexity of current space power systems and the
dynamics of the environments in which they operate, monitoring systems
can no longer be static in nature. It appears that inteliigent health
status monitoring systems must go beyond complete rule-based systems to
hierarchically structured model-based systems. Such an approach allows
the inherent dynamics of the system itself, as well as the dynamics of
the system in different contexts or modes, to be reflected in the
monitoring system and the supporting data reduction subsystem or
module.

It has also been shown that much of the reduction process should
take the form of converting quantitative telemetry data to qualitative
data. Knowledge-Based Systems gain their advantage because they can
perform symbolic reasoning. Thus the best approach to data reduction
for such applications 1is to process teh data using traditional
computing environments with the goal of reducing the data to
qualitative symbolic representations which can then be reasoned about
in the knowledge base. Merging qualitative and quantitative data
analysis in knowledge-based systems for EPS halth status monitoring is
an area for further investigation.
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